64 research outputs found

    Design and Fabrication of Terahertz Metallic Gratings on a Two-Wire Waveguide

    Get PDF
    In this study, we present the design, fabrication and experimental characterization of waveguide-integrated gratings operating at THz frequencie

    UV-induced modification of stress distribution in optical fibers and its contribution to Bragg grating birefringence

    Full text link
    This paper discusses the importance of stress-induced contributions to the photo-induced birefringence observed in fiber Bragg gratings. Optical tomography measurements are performed in exposed and unexposed fibers to extract the stress profiles induced by UV-writing of fiber Bragg gratings for various exposure levels. A photoelastic analysis and a high-order isoparametric finite elements method are then used to calculate the birefringence caused by stress profile modifications. The results are compared to the birefringence directly measured by spectral analysis of a chirped fiber grating with multiple phase-shifts. We can therefore estimate the fraction of the photo-induced birefringence due to stress-induced anisotropy following UV exposure. © 2008 Optical Society of America

    Integrated Generation of High-dimensional Entangled Photon States and Their Coherent Control

    Get PDF
    We demonstrate the generation of high-dimensional entangled photon pairs with a Hilbert-space dimensionality larger than 100 from an on-chip nonlinear microcavity, and introduce a coherent control scheme using standard telecommunications components

    FLEA: Fresnel-limited extraction algorithm applied to spectral phase interferometry for direct field reconstruction (SPIDER)

    Get PDF
    We present a novel extraction algorithm for spectral phase interferometry for direct field reconstruction (SPIDER) for the so-called X-SPIDER configuration. Our approach largely extends the measurable time windows of pulses without requiring any modification to the experimental X-SPIDER set-up.Comment: 24 pages 26 references 8 figure

    Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide

    Get PDF
    We demonstrate sub-picosecond wavelength conversion in the C-band via four wave mixing in a 45cm long high index doped silica spiral waveguide. We achieve an on/off conversion efficiency (signal to idler) of + 16.5dB as well as a parametric gain of + 15dB for a peak pump power of 38W over a wavelength range of 100nm. Furthermore, we demonstrated a minimum gain of + 5dB over a wavelength range as large as 200nm

    On-chip CMOS-compatible all-optical integrator

    Get PDF
    One reason for using photonic devices is their speed—much faster than electronic circuits—but there are many challenges in integrating the two technologies. Ferrera et al. construct a CMOS-compatible monolithic optical waveform integrator, a key building block for photonic circuits

    Scaling On-Chip Entangled Photon States to Higher Dimensions

    Get PDF
    Considerable efforts have recently focused on advancing quantum information pro- cessing by increasing the number of qubits (the simplest unit of quantum information) in nonclassical systems such as ultracold atoms and superconducting circuits. A complementary approach to scale up infor- mation content is to move from two-level (qubit) to multilevel (quDit) systems

    Generation and coherent control of pulsed quantum frequency combs

    Get PDF
    We present a method for the generation and coherent manipulation of pulsed quantum frequency combs. Until now, methods of preparing high-dimensional states on-chip in a practical way have remained elusive due to the increasing complexity of the quantum circuitry needed to prepare and process such states. Here, we outline how high-dimensional, frequency-bin entangled, two-photon states can be generated at a stable, high generation rate by using a nested-cavity, actively mode-locked excitation of a nonlinear micro-cavity. This technique is used to produce pulsed quantum frequency combs. Moreover, we present how the quantum states can be coherently manipulated using standard telecommunications components such as programmable filters and electro-optic modulators. In particular, we show in detail how to accomplish state characterization measurements such as density matrix reconstruction, coincidence detection, and single photon spectrum determination. The presented methods form an accessible, reconfigurable, and scalable foundation for complex high-dimensional state preparation and manipulation protocols in the frequency domain
    • …
    corecore